Abstract

Adsorption techniques are widely used to remove certain groups of pollutants such as dyes which are not amenable to biodegradation and environmentally very problematic. Although commercial activated carbon is a preferred sorbent for color removal, its widespread use is restricted due to high cost. As such, alternative non-conventional sorbents should be investigated. It is well-known that natural materials, waste materials from industry and agriculture, and bio sorbents can be obtained without a cost, therefore could be employed as inexpensive sorbents. Therefore the present investigation reports the adsorptive capacity of an industrial residue for the removal of azo dyes. Batch experiments were carried out for the sorption of the dye onto the adsorbent. The influence of contact time, adsorbent dose, pH and initial dye concentration on the adsorption capacity of the material was studied. Kinetics and adsorption isotherms were also studied to evaluate the rate of dye removal and the capacity of the adsorbent. The equilibrium data best fits freundlich isotherm equation. Adsorption capacity (Kf) and intensity of adsorption (n) as determined by fitting the equilibrium data to freundlich isotherm equation are calculated to be 0.26 and 0.82, respectively. The adsorption process was found to undergo via a pseudo-second-order adsorption kinetics with a rate constant of 3.81×10-3(g /mg / min). The removal of dye was not affected for the initial dye concentration range of 15 to 256 mg/L. An adsorption process; requiring an equilibrium time of 30 h with optimum adsorbent dose of 19 g/L for 77.4% dye removal efficiency was observed at near neutral pH. However, as the pH of water is adjusted from 7 to 9, the dye removal efficiency was greater than 90%. The overall result shows that the industrial by product investigated in this study exhibited a high potential for the removal of dye from aqueous solution. Key words: Dye, adsorbent, adsorption isotherms, batch adsorption, removal.

Highlights

  • IntroductionIt is estimated that 10,000 different types of dyes and pigments are produced worldwide annually (Wallace, 2001) out of which a large number of dyes are azo compounds (-N=N-), which are linked by an azo bridge

  • The dye used for the investigation of the adsorptive capacity of the waste residue was obtained from Akaki textile industry located in Addis Ababa, Ethiopia

  • The media has an efficiency of 90% when the pH of the adsorbent and adrobate mixture is between 7 to 9

Read more

Summary

Introduction

It is estimated that 10,000 different types of dyes and pigments are produced worldwide annually (Wallace, 2001) out of which a large number of dyes are azo compounds (-N=N-), which are linked by an azo bridge. Chemical composition Quartz (SiO2) Kaolin Al(OH) Fe2(SO4) MgSO4 Percent

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call