Abstract

This study was conducted in the Sericulture Research Laboratory of Melkassa Research Center. Four bivoltine and one polyvoltine silkworm were involved in the crossing experiment and laid out in complete randomized design with four replications. Data was collected on fecundity, pupation rate (%), number of diseased larvae, survival rate (%), cocoon weight (g), cocoon shell weight (g), cocoon shell ratio (%) and filament length (m). Uniform and non-significant numbers of eggs produced by adults and cocooning percentages were recorded for both hybrid and parents in all the generations. Average larval weight significantly (P<0.01) reduced for F1, F2, F3 and F4 generations hybrids than parents but increased in F5, F6 and F7 generations hybrids. Silk ratios and survival rates significantly (P<0.01) increased for all hybrids than parent bivoltine in all hybrid generations. Larval period significantly (P<0.01) reduced in F5, F6 and F7 generations hybrid than parent bivoltines. Filament length significantly (P<0.01) reduced in F1, F2, F3 and F4 generations hybrids than parent bivoltine but significantly increased in F5, F6 and F7 generations hybrids than parent bivoltines. It can be concluded that instead of using parent polyvoltine and bivoltine mulberry silkworms separately for silk production, the farmers can use F5 and above generations hybrids of multivoltine x bivoltine for relatively higher disease resistance and maximum silk productions.   Key words: Polyvoltine silkworm, bivoltine silkworm, hybrids.

Highlights

  • Silkworm diseases form major constraint in realizing full potential of the silkworm hybrids

  • The silkworm, Bombyx mori L. forms one of the very important insects of choice with large number of strains which is best exemplified for utilization of heterosis by crossing them in different combinations (Datta and Nagaraju, 1987)

  • Cross breeding is widely used in commercial animal production as a means of exploiting heterosis

Read more

Summary

Introduction

Silkworm diseases form major constraint in realizing full potential of the silkworm hybrids. Among all the silkworm diseases that cause damage, viral diseases are most serious (Samson, 1990; Subba, 1991; Sivaprakasam and Rabindra, 1995). Nuclear polyhedrosis (BmNPV) belongs to Baculoviridae, causes nuclear polyhedrosis (grasserie) in silkworms which is the most common viral disease and is prevalent in almost all the sericulture areas in India. The silkworm, Bombyx mori L. forms one of the very important insects of choice with large number of strains which is best exemplified for utilization of heterosis by crossing them in different combinations (Datta and Nagaraju, 1987)

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call