Abstract

We consider the notions of equicontinuity point, sensitivity point and so on from a topological point of view. Many of these notions can be sensibly defined either in terms of (finite) open covers or uniformities. We show that for the notions of equicontinuity point and sensitivity point, Hausdorff or uniform versions coincide in compact Hausdorff spaces and are equivalent to the standard definitions stated in terms of a metric in compact metric spaces. We prove that a uniformly chain transitive map with uniform shadowing property on a compact Hausdorff uniform space is either uniformly equicontinuous or it has no uniform equicontinuity points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.