Abstract

Variation source identification is an important task of quality assurance in multistage manufacturing processes (MMPs). However, existing approaches, including the quantitative engineering-model-based methods and the data-driven methods, provide limited capabilities in variation source identification. This paper proposes a new methodology that does not depend on accurate quantitative engineering models. Instead, engineering domain knowledge about the interactions between potential variation sources and product quality variables is represented as qualitative indicator vectors. These indicator vectors guide the rotation of the factor loading vectors that are derived from factor analysis of the multivariate measurement data. Based on this engineering-driven factor analysis, a procedure is presented to identify multiple variation sources that are present in a MMP. The effectiveness of the proposed methodology is demonstrated in a case study of a three-stage assembly process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.