Abstract

We propose a band engineering scheme on the biphenylene network, a newly synthesized carbon allotrope. We illustrate that the electronic structure of the biphenylene network can be significantly altered by controlling conditions affecting the symmetry and destructive interference of wave functions through periodic fluorination. First, we investigate the mechanism for the appearance of a type-II Dirac fermion in a pristine biphenylene network. We show that the essential ingredients are mirror symmetries and stabilization of the compact localized eigenstates via destructive interference. While the former is used for the band-crossing point along high symmetry lines, the latter induces highly inclined Dirac dispersions. Subsequently, we demonstrate the transformation of the biphenylene network's type-II Dirac semimetal phase into various Dirac phases such as type-I Dirac, gapped type-II Dirac, and nodal line semimetals through the deliberate disruption of mirror symmetry or modulation of destructive interference by varying the concentration of fluorine atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.