Abstract

We have measured the intrinsic exciton dephasing in high-quality zinc blende CdSe/CdS colloidal quantum dots in the temperature range from 5 to 170 K using a sensitive three-beam photon echo technique in heterodyne detection, which is not affected by spectral diffusion. Pure dephasing via acoustic phonons dominates the initial dynamics, followed by an exponential zero-phonon line dephasing. From the temperature dependence of the zero-phonon line dephasing, the exciton lifetime, and the exciton thermalization within its fine structure, we show that the zero-phonon line dephasing of the lowest bright state originates from the phonon-assisted spin–flip to dark exciton states. Importantly, we can control the dephasing by tailoring the exciton fine structure through its dependence on the dot core size and shell thickness, as expected from the spin–flip mechanism. By reducing the electron–hole exchange interaction with increasing core size and delocalization of the electron wave function in the quasi-type-II core/shell band alignment, we find the longest zero-phonon line dephasing time of ∼110 ps at 5 K in dots with the largest core diameter (5.7 nm) and the thickest CdSe shell (9 monolayers) in the series studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.