Abstract
Colloidal quantum dots (QDs) are shown to be effective as light-harvesting sensitizers of metal oxide semiconductor (MOS) photoelectrodes for photoelectrochemical (PEC) hydrogen (H2) generation. The CdSe/CdS core/shell architecture is widely studied due to their tunable absorption range and band alignment via engineering the size of each composition, leading to efficient carrier separation/transfer with proper core/shell band types. However, until now the effect of core size on the PEC performance along with tailoring the core/shell band alignment is not well understood. Here, by regulating four types of CdSe/CdS core/shell QDs with different core sizes (diameter of 2.8, 3.1, 3.5, and 4.8 nm) while the thickness of CdS shell remains the same (thickness of 2.0 ± 0.1 nm), the Type II, Quasi-Type II, and Type I core/shell architecture are successfully formed. Among these, the optimized CdSe/CdS/TiO2 photoelectrode with core size of 3.5 nm can achieve the saturated photocurrent density (Jph) of 17.4 mA cm-2 under standard one sun irradiation. When such cores are further optimized by capping alloyed shells, the Jph can reach values of 22 mA cm2 which is among the best-performed electrodes based on colloidal QDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.