Abstract

We theoretically investigate the escape rate occurring via quantum tunneling in a system affected by tailored dissipation. Specifically, we study the environmental assisted quantum tunneling of the superconducting phase in a current-biased Josephson junction. We consider Ohmic resistors inducing dissipation both in the phase and in the charge of the quantum circuit. We find that the charge dissipation leads to an enhancement of the quantum escape rate. This effect appears already in the low Ohmic regime and also occurs in the presence of phase dissipation that favors localization. Inserting realistic circuit parameters, we address the question of its experimental observability and discuss suitable parameter spaces for the observation of the enhanced rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call