Abstract

Previous efforts to insert fullerenes into a carbon nanotube (CNT) involved the isolated synthesis of CNTs and fullerenes and then annealing CNTs and fullerenes together for encapsulation. We demonstrated the process for the continuous production of fullerene peapods inside the arc instrument by modifying the conventional arc ablation system, which can be repeated to obtain the desired mass scale product. Inside the arc discharge unit, by using the tunable external magnetic field, the double-walled CNTs (DWCNTs) were first synthesized and then directed to deposit onto the water cooled aluminium (Al) plate. The openings were created on DWCNTs by controlled heating of the Al plate and then fullerenes were synthesized and deposited on DWCNTs. In the arc instrument, fullerenes were finally directed to enter into DWCNTs from the defect sites by heating the Al plate in a vacuum. The formation of the peapod was established by the structure-property studies despite the huge deposition of metal catalyst nanoparticles and fullerenes on the surface of the nanotube which were a serious challenge for molecular level characterization of the grown peapod structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call