Abstract

Automatic passenger counting (APC) in public transportation has been approached with various machine learning and artificial intelligence methods since its introduction in the 1970s. It is mainly used for revenue sharing, which (in Germany alone) is in the billions annually and supply planning, which is essential for services of general interest. While equivalence testing is becoming more popular than difference detection (Student’s t-test), the former is much more difficult to pass to ensure low user risk. On the other hand, recent developments in artificial intelligence have led to algorithms that promise much higher counting quality (lower bias). However, gradient-based methods (including Deep Learning) typically run into local optima. In this work, we explore and exploit various aspects of machine learning to increase the reliability, performance, and counting quality of the Neural APC 3D depth video-based LSTM neural network. We perform a grid search with several fundamental parameters: the selection and size of the training set, which is similar to cross-validation, and the initial network weights and randomness during the training process. Using this experiment, we show how aggregation techniques such as ensemble quantiles can reduce bias, and we give an idea of the overall spread of the results. We utilize the test success chance, a simulative metric based on the empirical distribution. We also employ a post-training Monte Carlo quantization approach and introduce cumulative summation to turn counting into a stationary method and allow unbounded counts. All in all, our numerous additions provide a major quality increase to the NAPC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.