Abstract

L-malic acid (MA) is a vital platform chemical with huge market demand because of its broad industrial applications. A cell factory for MA production was engineered by strengthening the intrinsic pathway without inserting foreign genes into Trichoderma reesei. The native MA transporter gene in the T. reesei genome was characterized (trmae1), and its overexpression significantly improved MA production, which increased from 2 to 56.24 g/L. Native pyruvate carboxylase, malate dehydrogenase, malic enzyme, and glucose transporter were overexpressed further to improve the titer and yield of MA production. Fungal morphology was adapted to produce MA in the fermenter by deleting gul1. A titer of 235.8 g/L MA was produced from the final engineered strain in a 5-L fermenter with a yield of 1.48 mol of MA per mol of glucose and productivity of 1.23 g/L/h. This study provides novel insights for understanding and remodeling the MA synthesis pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call