Abstract

The ability to control the optical properties of a material with an electric field has led to optical memory devices, communication systems, optical signal processing, or quantum cryptography. Understanding electro-optic effects, especially in thin films, would improve the efficiency of these applications. In particular, the influence of epitaxial strains is of prime importance. In addition, the active control of these effects would be of great interest to tailor the material to the desired performance. Here, we demonstrate through first-principle calculations that the linear electro-optic response (Pockels effect) of two silicon-compatible ferroelectrics is stable with respect to bi-axial strain and that the electro-optic response can be strongly enhanced through the electrical control of the polarization. We attribute the former to the lack of optical phonon softening and a weak elasto-optic response and the latter to the externally induced softening of a phonon of symmetry A1. Our results are readily applicable to other polar materials and show that the electro-optic effect can be efficiently engineered to meet the performance criteria of future technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.