Abstract

Engineering symmetry breaking in thermoelectric materials holds promise for achieving an optimal thermoelectric efficiency. van der Waals (vdW) layered transition metal dichalcogenides (TMDCs) provide critical opportunities for manipulating the intrinsic symmetry through in-plane symmetry breaking interlayer twists and out-of-plane symmetry breaking heterostructures. Herein, the symmetry-dependent thermoelectric properties of MoS2 and MoSe2 obtained via first-principles calculations are reported, yielding an advanced ZT of 2.96 at 700 K. The underlying mechanisms reveal that the in-plane symmetry breaking results in a lowest thermal conductivity of 1.96 W·m-1·K-1. Additionally, the electric properties can be significantly modulated through band flattening and bandgap alteration, stemming directly from the modified interlayer electronic coupling strength owing to spatial repulsion effects. In addition, out-of-plane symmetry breaking induces band splitting, leading to a decrease in the degeneracy and complex band structures. Consequently, the power factor experiences a notable enhancement from ∼1.32 to 1.71 × 10-2 W·m-1·K-2, which is attributed to the intricate spatial configuration of charge densities and the resulting intensified intralayer electronic coupling. Upon simultaneous implementation of in-plane and out-of-plane symmetry breaking, the TMDCs exhibit an indirect bandgap to direct bandgap transition compared to the pristine structure. This work demonstrates an avenue for optimizing thermoelectric performance of TMDCs through the implementation of symmetry breaking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.