Abstract

While stress-free and tensile films are well-suited for released in-plane MEMS designs, compressive films are needed for released out-of-plane MEMS structures such as buckled beams and diaphragms. This study presents a characterization of stress on a variety of sputtered and plasma-enhanced chemical vapour deposition (PECVD)-deposited films, including titanium tungsten, invar, silicon nitride and amorphous silicon, appropriate for the field of bistable MEMS. Techniques and strategies are presented (including varying substrate bias, pressure, temperature, and frequency multiplexing) for tuning internal stress across the spectrum from highly compressive (−2300 MPa) to highly tensile (1500 MPa). Conditions for obtaining stress-free films are also presented in this work. Under certain conditions during the PECVD deposition of amorphous silicon, interesting ‘micro-bubbles’ formed within the deposited films. Strategies to mitigate their formation are presented, resulting in a dramatic improvement in surface roughness quality from 667 nm root mean square (RMS) to 16 nm RMS. All final deposited films successfully passed the traditional ‘tape test’ for adhesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.