Abstract
Based on a unified physical model and first-principle calculations, a material-oriented methodology has been proposed to control the bipolar switching behavior of an oxide-based resistive random access memory (RRAM) cell. According to the material-oriented methodology, the oxide-based RRAM cell can be designed by material engineering to achieve the required device performance. In this article, a Gd-doped HfO2 RRAM cell with excellent bipolar switching characteristics is developed to meet the requirements of memristive device application. The typical memristive characteristics of the Gd-doped HfO2 RRAM cell are presented, and the mechanism is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.