Abstract

Optical protein sensors that enable detection of relevant biomolecules of interest play central roles in biological research. Coupling fluorescent reporters with protein sensing units has enabled the development of a wide range of biosensors that recognize analytes with high selectivity. In these sensors, analyte recognition induces a conformational change in the protein sensing unit that can modulate the optical signal of the fluorescent reporter. Here, we explore various designs for the creation of tunable allosteric-like fluorogenic protein sensors through incorporation of sensing protein units within the chemogenetic fluorescence-activating and absorption-shifting tag (FAST) that selectively binds and stabilizes the fluorescent state of 4-hydroxybenzylidene rhodanine (HBR) analogs. Conformational coupling allowed us to design analyte-responsive optical protein sensors through allosteric-like modulation of fluorogen binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.