Abstract
Hypoxia-inducible promoters of a wide range of activities are desirable for fine-tuning gene expression in response to oxygen limitation, especially for the Crabtree negative yeast Pichia pastoris (Komagataella phaffii) with a high oxygen consumption rate in large-scale fermentations. Here we constructed a hypoxia-inducible promoter library for P. pastoris through error-prone PCR of Pichia stipitis ADH2 promoter (PsADH2). The library of 30 selected promoters showing 0.4- to 5.5-fold of the PsADH2 activity was obtained through high-throughput screening in microplates using the reporter yeast-enhanced green fluorescent protein. Two strong promoters, AM23 and AM30, were further characterized in shake flask cultures at high and low dissolved oxygen levels. They responded more sensitively to the low dissolved oxygen level, achieving a 4.6-, 7.9-fold and 3.6-, 7.7-fold higher fluorescence intensity and transcript level, respectively, than the wild-type PsADH2. Their hypoxia-inducible properties were confirmed with two additional reporters: β-galactosidase and Vitreoscilla hemoglobin, to demonstrate the broad applicability of the promoter library. During the typical fermentation process in shake flasks, the promoter AM30 showed strong expression with cell growth and decreased oxygen levels, without any additional chemical inducers or operations. Since the potent industrial host P. pastoris is recognized as an easy to scale-up system, it is reasonable to expect that the obtained hypoxia-inducible promoter library may have great potential to enable convenient regulation of gene expression under industrial fermentations which are usually run under oxygen limitation due to high cell density cultivations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have