Abstract

Glycosylation is a crucial post-translational modification for a wide range of functionalities. Adhesive protein-based biomaterials in nature rely on heavily glycosylated proteins such as spider silk and mussel adhesive proteins. Engineering protein-based biomaterials genetically enables desired functions and characteristics. Additionally, utilization of glycosylation for biomaterial engineering can expand possibilities by including saccharides to the inventory of building blocks. Here, de novo glycosylation of Bacillus subtilis amyloid-like biofilm protein TasA using a Campylobacter jejuni glycosylation circuit is proposed to be a novel biomaterial engineering method for increasing adhesiveness of TasA fibrils. A C. jejuni glycosylation motif is genetically incorporated to tasA gene and expressed in Escherichia coli containing the C. jejuni pgl protein glycosylation pathway. Glycosylated TasA fibrils indicate enhanced adsorption on the gold surface without disruption of fibril formation. Our findings suggest that N-linked glycosylation can be a promising tool for engineering protein-based biomaterials specifically regarding adhesion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.