Abstract

The magnetoresistance (MR) effect is widely used in technologies that pervade the world, from magnetic reading heads to sensors. Diverse contributions to MR, such as anisotropic, giant, tunnel, colossal, and spin‐Hall, are revealed in materials depending on the specific system and measuring configuration. Half‐metallic manganites hold promise for spintronic applications but the complexity of competing interactions has not permitted the understanding and control of their magnetotransport properties to enable the realization of their technological potential. This study reports on the ability to induce a dominant switchable magnetoresistance in La0.7Sr0.3MnO3 epitaxial films at room temperature (RT). By engineering an extrinsic magnetic anisotropy, a large enhancement of anisotropic magnetoresistance (AMR) is achieved which at RT leads to signal changes much larger than the other contributions such as the colossal magnetoresistance. The dominant extrinsic AMR exhibits large variation in the resistance in low field region, showing high sensitivity to applied low magnetic fields. These findings have a strong impact on the real applications of manganite‐based devices for the high‐resolution low field magnetic sensors or spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.