Abstract
Highly efficient electrocatalyst for carbon dioxide reduction (CO2RR) is desirable for converting CO2 into carbon-based chemicals and reducing anthropogenic carbon emission. Regulating catalyst surface to improve the affinity for CO2 and the capability of CO2 activation is the key to high-efficiency CO2RR. In this work, we develop an iron carbide catalyst encapsulated in nitrogenated carbon (SeN-Fe3C) with an aerophilic and electron-rich surface by inducing preferential formation of pyridinic-N species and engineering more negatively charged Fe sites. The SeN-Fe3C exhibits an excellent CO selectivity with a CO Faradaic efficiency (FE) of 92 % at −0.5 V (vs. RHE) and remarkably enhanced CO partial current density as compared to the N-Fe3C catalyst. Our results demonstrate that Se doping reduces the Fe3C particle size and improves the dispersion of Fe3C on nitrogenated carbon. More importantly, the preferential formation of pyridinic-N species induced by Se doping endows the SeN-Fe3C with an aerophilic surface and improves the affinity of the SeN-Fe3C for CO2. Density functional theory (DFT) calculations reveal that the electron-rich surface, which is caused by pyridinic N species and much more negatively charged Fe sites, leads to a high degree of polarization and activation of CO2 molecule, thus conferring a remarkably improved CO2RR activity on the SeN-Fe3C catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.