Abstract
Despite the remarkable clinical efficacy of chimeric antigen receptor (CAR) T cells in hematological malignancies, only a subset of patients achieves a durable complete response (dCR). DCR has been correlated with CAR T cell products enriched with T cells memory phenotypes. Therefore, reagents that consistently promote memory phenotypes during the manufacturing of CAR T cells have the potential to significantly improve clinical outcomes. A novel modular multi-cytokine particle (MCP) platform is developed that combines the signals necessary for activation, costimulation, and cytokine support into a single "all-in-one" stimulation reagent for CAR T cell manufacturing. This platform allows for the assembly and screening of compositionally diverse MCP libraries to identify formulations tailored to promote specific phenotypes with a high degree of flexibility. The approachis leveraged to identify unique MCP formulations that manufacture CAR T cellproducts from diffuse large B cell patients with increased proportions of memory-like phenotypes MCP-manufactured CAR T cells demonstrate superior anti-tumor efficacy in mouse models of lymphoma and ovarian cancer through enhanced persistence. These findings serve as a proof-of-principle of the powerful utility of the MCP platform to identify "all-in-one" stimulation reagents that can improve the effectiveness of cell therapy products through optimal manufacturing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.