Abstract

Branched-chain fatty acids (BCFAs) are key precursors of branched-chain fuels, which have cold-flow properties superior to straight chain fuels. BCFA production in Gram-negative bacterial hosts is inherently challenging because it competes directly with essential and efficient straight-chain fatty acid (SCFA) biosynthesis. Previously, Escherichia coli strains engineered for BCFA production also co-produced a large percentage of SCFA, complicating efficient isolation of BCFA. Here, we identified a key bottleneck in BCFA production: incomplete lipoylation of 2-oxoacid dehydrogenases. We engineered two protein lipoylation pathways that not only restored 2-oxoacid dehydrogenase lipoylation, but also increased BCFA production dramatically. E. coli expressing an optimized lipoylation pathway produced 276mg/L BCFA, comprising 85% of the total free fatty acids (FFAs). Furthermore, we fine-tuned BCFA branch positions, yielding strains specifically producing ante-iso or odd-chain iso BCFA as 77% of total FFA, separately. When coupled with an engineered branched-chain amino acid pathway to enrich the branched-chain α-ketoacid pool, BCFA can be produced from glucose at 181mg/L and 72% of total FFA. While E. coli can metabolize BCFAs, we demonstrated that they are not incorporated into the cell membrane, allowing our system to produce a high percentage of BCFA without affecting membrane fluidity. Overall, this work establishes a platform for high percentage BCFA production, providing the basis for efficient and specific production of a variety of branched-chain hydrocarbons in engineered bacterial hosts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.