Abstract

The activity of exposed crystal facets directly determines its physicochemical properties. Thus, acquiring a high percentage of reactive facets by crystal facet engineering is highly desirable for improving the catalytic reactivity. Herein, single-crystalline α-MnO2 nanowires with major exposed high-index {310} facets were synthesized via a facile hydrothermal route with the assistance of a capping agent of oxalate ions. Comparing with two other low-index facets ({100} and {110}), the resulting α-MnO2 nanowires with exposed {310} facets exhibited much better activity and stability for carcinogenic formaldehyde (HCHO) oxidation, making 100% of 100 ppm of HCHO mineralize into CO2 at 60 °C, even better than some Ag supported catalysts. The density functional theory (DFT) calculations were used to investigate the difference in the catalytic activity of α-MnO2 with exposed {100}, {110}, and {310} facets. The experimental characterization and theoretical calculations all confirm that the {310} facets with high ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call