Abstract
Phytophthora pathogens lead to numerous economically damaging plant diseases worldwide, including potato late blight caused by P. infestans and soybean root rot caused by P. sojae. Our previous work showed that Phytophthora pathogens may generate abundant phosphatidylinositol 3-phosphate (PI3P) to promote infection via direct association with RxLR effectors. Here, we designed a disease control strategy for metabolizing pathogen-derived PI3P by expressing secreted Arabidopsis thaliana phosphatidylinositol-4-phosphate 5-kinase 1 (AtPIP5K1), which can phosphorylate PI3P to PI(3,4)P2. We fused AtPIP5K1 with the soybean PR1a signal peptide (SP-PIP5K1) to enable its secretion into the plant apoplast. Transgenic soybean and potato plants expressing SP-PIP5K1 showed substantially enhanced resistance to various P. sojae and P. infestans isolates, respectively. SP-PIP5K1 significantly reduced PI3P accumulation during P. sojae and soybean interaction. Knockout or inhibition of PI3 kinases (PI3Ks) in P. sojae compromised the resistance mediated by SP-PIP5K1, indicating that SP-PIP5K1 action requires a supply of pathogen-derived PI3P. Furthermore, we revealed that SP-PIP5K1 can interfere with the action of P. sojae mediated by the RxLR effector Avr1k. This novel disease control strategy has the potential to confer durable broad-spectrum Phytophthora resistance in plants through a clear mechanism in which catabolism of PI3P interferes with RxLR effector actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.