Abstract
Here we describe an advanced paradigm for the design, construction and stable implementation of complex biological systems in microbial organisms. This engineering strategy was previously applied to the development of an Escherichia coli-based platform, which enabled the use of brown macroalgae as a feedstock for the production of biofuels and renewable chemicals. In this approach, functional genetic modules are first designed in silico and constructed on a bacterial artificial chromosome (BAC) by using a recombineering-based inchworm extension technique. Stable integration into the recipient chromosome is then mediated through the use of recombinase-assisted genome engineering (RAGE). The flexibility, simplicity and speed of this method enable a comprehensive optimization of several different parameters, including module configuration, strain background, integration locus, gene copy number and intermodule compatibility. This paradigm therefore has the potential to markedly expedite most strain-engineering endeavors. Once a biological system has been designed and constructed on a BAC, its implementation and optimization in a recipient host can be carried out in as little as 1 week.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have