Abstract
The lack of understanding in engineering cation defects in metal oxides has impeded the development of high performance, and transparent electronic devices. Through studying the formation energy of various cationic defects in Mn-doped SnO2 via simulation, we found Mn3+ cations occupy the interstitial sites of SnO2 nanocrystals, and we proved that such defects can be engineered to significantly improve resistive switching performance of tin oxide-based devices. With this finding, a new solution-processed approach has been developed to synthesize Mn-doped SnO2 nanocrystals with a self-assembly technique for high quality transparent Mn-doped SnO2 thin film fabrication. Defect migration behavior of the Mn-doped SnO2 thin film was studied by building a metal-oxide-metal sandwich device. The effects of cationic defects, such as Mn interstitials, on the charge transport behavior were further studied to reveal the underlying mechanism. This study provides new insights into the design and engineering of defects in transparent oxides for high-density data storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.