Abstract

The current production of recombinant insulin via fermenter-based platforms (Escherichia coli and yeast) could not fulfill its fast-growing commercial demands, thus leading to a great interest in its sustainable large-scale production at low cost using a plant-based system. In the present study, Agrobacterium tumefaciens-mediated nuclear stable genetic transformation of an industrial oilseed crop, Camelina sativa, to express pro-insulin (with three furin endoprotease cleavage sites) fused with cholera toxin B subunit (CTB) in their seeds was successfully achieved for the first time. The bar gene was used as a selectable marker for selecting transformants and producing herbicide-resistant camelina plants. The transformation process involved the infiltration of camelina inflorescences (at flower buds with partially opened flowers) with A. tumefaciens and harvesting the seeds (T0) at maturity. The T0 seeds were raised into the putative T1 plants sprayed with Basta herbicide (0.03%, v/v), and the survived green transformed plants tested positive for pro-insulin and bar genes. A transformation frequency of 6.96% was obtained. The integration and copy number of the pro-insulin transgene and its expression at RNA and protein levels were confirmed in T1 plants using Southern hybridization, semi-quantitative Reverse Transcriptase-Polymerase Chain Reaction (sqPCR), and quantitative real-time Time PCR (qPCR) and western blot analysis, respectively. Enzyme-linked immunosorbent Assay (ELISA) quantified the amount of expressed pro-insulin protein, and its anti-diabetic efficacy was validated in diabetic rats on oral feeding. Transgenic plants integrated the pro-insulin gene into their genomes and produced a maximum of 197µg/100mg of pro-insulin (0.804% of TSP) that had anti-diabetic efficacy in rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call