Abstract

Bacillus subtilis has been studied for more than half a century, ever since the dawn of molecular biology, as a representative Gram-positive bacterium and cell factory. Two characteristic capacities of B. subtilis, namely its natural competence for DNA uptake and high-level enzyme secretion, have been investigated and exploited intensively during these long years. As a consequence, this bacterium has evolved into an excellent platform for synthetic biological research and development. In this review, we outline basic concepts for B. subtilis cell factory engineering, and we describe several examples of its applications in the production of proteins and high-value metabolites. In particular, we highlight engineering approaches that can make the already very efficient Bacillus protein secretion pathways even more efficient for the production of enzymes and pharmaceutical proteins. We further showcase examples of metabolic engineering in B. subtilis based on synthetic biology principles to produce various high-value or health-promoting substances, especially inositol stereoisomers. We conclude that the versatile traits of B. subtilis, combined with multi-omics approaches and rapidly developing technologies for genome engineering and high-throughput screening enable us to modify and optimize this bacterium’s metabolic circuits to deliver compounds that are needed for a green and sustainable society as well as a healthy population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call