Abstract

This paper describes the engineering architecture and function of the neutron Time-of-Flight (nToF) diagnostic suite installed on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). These instruments provide key measures of neutron yield, ion temperature, drift velocity, neutron bang-time, and neutron downscatter ratio. Currently, there are five nToFs on three collimated lines-of-site (LOS) from 18m to 27m from Target Chamber Center, and three positioned 4.5m from TCC, within the NIF Target Chamber but outside the vacuum and confinement boundary by use of re-entrant wells on three other LOS. NIF nToFs measure the time history and equivalent energy spectrum of reaction generated neutrons from a NIF experiment. Neutrons are transduced to electrical signals, which are then carried either by coaxial or Mach-Zehnder transmission systems that feed divider assemblies and fiducially timed digitizing oscilloscopes outside the NIF Target Bay (TB) radiation shield wall. One method of transduction employs a two-stage process wherein a neutron is converted to scintillation photons in hydrogen doped plastic (20x40mm) or bibenzyl crystals (280x1050mm), which are subsequently converted to an electrical signal via a photomultiplier tube or a photo-diode. An alternative approach uses a single-stage conversion of neutrons-to-electrons by use of a thin (0.25 to 2 mm) Chemical Vapor Deposition Diamond (CVDD) disc (2 to 24mm radius) under high voltage bias. In comparison to the scintillator method, CVDDs have fast rise and decay times (<ns), have very low residual tails, are insensitive to shot gammas, and are less sensitive to the neutron signal of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.