Abstract
Nickel-iron layered double hydroxide (NiFe LDH) is a promising oxygen evolution reaction (OER) electrocatalyst under alkaline conditions. Much research has been performed to understand the structure-activity relationship of NiFe LDH under OER conditions. However, the specific role of the Fe species remains unclear and under debate. Herein, based on DFT calculations, it was discovered that the edge Fe sites show higher activity towards OER than either the edge Ni sites or lattice sites. Therefore, a facile acid-etching method was proposed to controllably induce the formation of edge Fe sites in NiFe LDH, and the obtained sample exhibited higher OER activity. X-ray absorption near edge structure and extended X-ray absorption fine structure analyses further revealed that the interaction of the edge Fe species with Ni is believed to contribute to the enhancement of the OER performance. This work provides a new understanding of the structure-activity relationship in NiFe LDH and offers a facile method for the design of efficient electrocatalysts in an alkaline environment.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have