Abstract

An optimal genetically-encoded probe for photoacoustic (PA) imaging should exhibit high optical absorption, low fluorescence quantum yield, and an absorption maxima within the near-infrared (NIR) window. One promising candidate is a newly engineered chromoprotein (CP), designated dark small ultra-red fluorescent protein (dsmURFP), which is based on a cyanobacterial phycobiliprotein. To optimize dsmURFP characteristics for PA imaging, we have developed a directed evolution method to iteratively screen libraries of protein variants with three different screening systems. Firstly, we took inspiration from dark-acceptor (also known as dark-quencher)-based Forster resonance energy transfer (FRET) constructs, and used dsmURFP as a dark acceptor from a mCardinal fluorescent donor. The rationale for this design was that the higher the extinction coefficient of the dsmURFP, the more the emission of the donor would be quenched. In addition, more energy transferred to the dark acceptor would lead to more thermoelastic expansion and a stronger PA signal. Three rounds of evolution using this first strategy resulted in dsmURFP1.3 that quenched the emission of mCardinal ~2-fold more efficiently than dsmURFP. Secondly, an absorption-based screening based on visual inspection of plates led to identification of the variant dsmURFP1.4, which exhibited a 2-fold higher absorbance and a 5 nm red shift. Thirdly, we developed a colony-based photoacoustic screening method. To demonstrate the utility of our optimized variants, we used photoacoustic imaging to visualize dsmURFP and its variants in phantom and in vivo experiments using chicken embryo models and murine bacterial bladder infection models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.