Abstract

We propose a deterministic, measurement-free implementation of a cubic phase gate for continuous-variable quantum information processing. In our scheme, the applications of displacement and squeezing operations allow us to engineer the effective evolution of the quantum state propagating through an optical Kerr nonlinearity. Under appropriate conditions, we show that the input state evolves according to a cubic phase Hamiltonian, and we find that the cubic phase gate error decreases inverse quartically with the amount of quadrature squeezing, even in the presence of linear loss. We also show how our scheme can be adapted to deterministically generate a nonclassical approximate cubic phase state with high fidelity using a ratio of native nonlinearity to linear loss of only 10^{-4}, indicating that our approach may be experimentally viable in the near term even on all-optical platforms, e.g., using quantum solitons in pulsed nonlinear nanophotonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call