Abstract
In the modern pharmaceutical industry, monoclonal antibodies are often used as therapeutic agents. However, they are restricted to cell surface antigens due to their inability to penetrate the outer cell membrane and maintain normal function in the reducing environment. Additionally, it can lead to cytotoxicity since it attacks cancerous cells by mimicking the human immune system. As an alternative, this study modifies the hyperstable single-chain fragment variable(scFv) antibody to eliminate cancer using its linear shape. The scFv(F8) antibody model was modified to recognize human Ras protein by altering residues in the antigen-binding site. Furthermore, a cell-penetrating peptide (CPP) was attached to the scFv(Ras) antibody model to allow entrance to the cell, creating CPP-scFv(Ras). Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE), western blotting, and the binding assay were performed to prove its effectiveness. As a result, CPP-scFv(Ras) was successfully engineered and bound to the antigen, HRas(G12V).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.