Abstract

This letter explores the advantages of additively manufactured substrates with spatially varying electromagnetic properties. These engineered substrates will be constructed using space filling curves (SFC) of various orders. New advanced manufacturing systems such as the nScrypt 3Dn-300, have enabled the rapid fabrication of these SFC substrates. This letter will apply the engineered SFC substrate to the design and fabrication of metasurface antennas. By utilising a SFC to vary the local substrate permittivity, along with the printed conductive patch dimensions, the range of achievable surface impedances can be greatly expanded. This enlarged design space will be leveraged to yield increased gain for a given metasurface antenna size. Methods to characterise the substrate permittivity and conductive ink are discussed along with a complete description of the metasurface antenna design, fabrication and validation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.