Abstract

An efficient preparative-scale synthetic procedure of l-phenylalanine derivatives has been developed using mutant variants of phenylalanine ammonia-lyase from Arabidopsis thaliana (AtPAL). After rigorous reaction engineering, the AtPAL-catalyzed hydroamination reaction of cinnamic acids provided several unnatural amino acids of high synthetic value, such as (S)-m- and (S)-p-methoxyphenylalanine; (S)-o- and (S)-m-methylphenylalanine; and (S)-o- and (S)-p-bromophenylalanine at preparative scale, significantly surpassing the catalytic efficiency in terms of conversions and yields of the previously reported PcPAL-based biotransformations. The AtPAL variants tolerated high substrate and product concentrations, representing an important extension of the PAL-toolbox, while the engineered biocatalytic procedures of improved E-factor and space-time yields fulfill the requirements of sustainable and green chemistry, providing facile access to valuable amino acid building blocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call