Abstract

A regenerative peripheral nerve interface (RPNI) offers a therapeutic solution for nerve injury through reconstruction of the target muscle. However, implanting a transected peripheral nerve into an autologous skeletal muscle graft in RPNI causes donor-site morbidity, highlighting the need for tissue-engineered skeletal muscle constructs. Here, an engineered regenerative isolated peripheral nerve interface (eRIPEN) is developed using 3D skeletal cell printing combined with direct electrospinning to create a nanofiber membrane envelop for host nerve implantation. In this in vivo study, after over 8 months of RPNI surgery, the eRIPEN exhibits a minimum Feret diameter of 15-20µm with a cross-sectional area of 100-500 µm2, representing the largest distribution of myofibers. Furthermore, neuromuscular junction formation and muscle contraction with a force of ≈28 N are observed. Notably, the decreased hypersensitivity to mechanical/thermal stimuli and an improved tibial functional index from -77 to -56 are found in the eRIPEN group. The present novel concept of eRIPEN paves the way for the utilization and application of tissue-engineered constructs in RPNI, ultimately realizing neuroprosthesis control through synaptic connections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.