Abstract
The pathogenesis of Type 1 diabetes (T1D) arises from the destruction of insulin-producing β-cells by islet-specific autoreactive T cells. Inhibition of islet-specific autoreactive T cells to rescue β-cells is a promising approach to treat new-onset T1D. The immune checkpoint signal axis programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) can effectively regulate the activity of T cells and prevent autoimmune attack. Here, megakaryocyte progenitor cells are genetically engineered to overexpress PD-L1 to produce immunosuppressive platelets. The PD-L1-overexpressing platelets (designated PD-L1 platelets) accumulate in the inflamed pancreas and may suppress the activity of pancreas autoreactive T cells in newly hyperglycemic non-obese diabetic (NOD) mice, protecting the insulin-producing β-cells from destruction. Moreover, PD-L1 platelet treatment also increases the percentage of the regulatory T cells (Tregs) and maintains immune tolerance in the pancreas. It is demonstrated that the rescue of β-cells by PD-L1 platelets can effectively maintain normoglycemia and reverse diabetes in newly hyperglycemic NOD mice.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have