Abstract
Engineered minichromosomes provide the ability to target transgenes to a defined insertion position for predictable expression on an independent chromosome. This technology promises to provide a means to add many genes to a synthetic chromosome in sequential manner. An additional advantage is that the multiple transgenes will not be inserted into the normal chromosomes and thus will not exhibit linkage drag when converging the transgenes to different germplasm nor will they be mutagenic. Telomere truncation coupled with the introduction of site-specific recombination cassettes has proven to be an easy method to produce minichromosomes. Telomere truncation results from the transformation of plasmids carrying a block of telomere repeats at one end. Minichromosomes consisting of little more than a centromere have been produced for B chromosomes of maize. Such small chromosomes have been studied for their meiotic behavior, which differs from normal sized chromosomes in that homologue pairing is rare or nonexistent and sister chromatid cohesion fails at meiosis I. Potential modifications of the minichromosomes that can address these issues are discussed. Minichromosomes can be recovered from transformed plants that are polyploid or that carry an additional chromosome as the preferred target for truncation. Site-specific recombination has been demonstrated to operate on these terminally located sites. By introducing normal B chromosomes into lines with engineered mini-B chromosomes, the latter can be increased in copy number, which provides the potential to augment the expression of the introduced genes. Because the vast majority of plant species have the same telomere sequence, the truncating transgenes should be effective in most plants to generate engineered minichromosomes. Such chromosomes establish the means to add or subtract multiple transgenes, multigene complexes, or whole biochemical pathways to plants to change their properties for agronomic applications or to use plants as factories for the production of foreign proteins or metabolites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.