Abstract
Breast cancer is a highly widespread form of malignant tumor characterized by a high rate of recurrence and mortality; it primarily occurs when tumor cells spread to peripheral regions of the body. Macrophages have a significant impact on the proliferation and metastasis of breast cancer. The exosomes generated by these cells exhibit an extensive spectrum of capabilities in suppressing the spread of cancer cells. These feature very specific targeting properties for breast cancer cells and inhibit the proliferation of cancer cells by altering the immune milieu within the tumor. This study investigates methods for developing macrophage-derived exosomes, such as using protein-coupled exosome membranes to protect delivery contents, creating multifunctional biomimetic particles, and utilizing ultrasonic fusion to protect delivery contents. Furthermore, this paper addresses recent advances in producing macrophage exosomes from organic and inorganic materials. In general, targeted treatment for breast cancer could benefit greatly from creating drug delivery systems mediated by macrophage exosomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.