Abstract

AimsCircular RNAs (circRNAs) are important regulators in breast cancer progression. However, the underlying mechanism of circRNAs functions in breast cancer remain largely unclear. Main methodsTo investigate the circRNAs expression pattern in breast cancer, high-throughput circRNA microarray assay was used. The top up-regulated circRNA, circZFAND6, was submitted to further experiments, including cell counting kit-8 (CCK-8) assay, colony formation assay, transwell assay and mouse xenograft assay. To investigate the underlying mechanism of circZFAND6 function in breast cancer progression, luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted. Key findingsWe found a novel circRNA, circZFAND6, was up-regulated in breast cancer tissues and cell lines. Inhibition of circZFAND6 reduced proliferation and metastasis of breast cancer. Mechanically, circZFAND6 acted as a competing endogenous RNA (ceRNA) to sponge miR-647 and increase fatty acid synthase (FASN) expression. And eukaryotic translation initiation factor 4A3 (EIF4A3) was found to bind to circZFAND6 pre-mRNA transcript upstream region, leading to the high expression of circZFAND6 in breast cancer. Inhibition of EIF4A3 also suppressed proliferation and metastasis of breast cancer. SignificanceEIF4A3-induced circZFAND6 up-regulation promoted proliferation and metastasis of breast cancer through the miR-647/FASN axis. Our results uncovered a possible mechanism underlying breast cancer progression and might provide a breast cancer treatment target.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.