Abstract

Nanomaterials that are used in therapeutic applications need a high degree of uniformity and functionality which can be difficult to attain. One strategy for fabrication is to utilize the biological precision afforded by recombinant synthesis. Through protein engineering, we have produced ∼27-nm dodecahedral protein nanoparticles using the thermostable E2 subunit of pyruvate dehydrogenase as a scaffold and added optical imaging, drug delivery, and tumor targeting capabilities. Cysteines in the internal cavity of the engineered caged protein scaffold (E2 variant D381C) were conjugated with maleimide-bearing Alexa Fluor 532 (AF532) and doxorubicin (DOX). The external surface was functionalized with polyethylene glycol (PEG) alone or with the tumor-targeting ligand folic acid (FA) through a PEG linker. The resulting bi-functional nanoparticles remained intact and correctly assembled. The uptake of FA-displaying nanoparticles (D381C-AF532-PEG-FA) by cells overexpressing the folate receptor was approximately six times greater than of non-targeting nanoparticles (D381C-AF532-PEG) and was confirmed to be FA-specific. Nanoparticles containing DOX were all cytotoxic in the low micromolar range. To our knowledge, this work is the first time that acid-labile drug release and folate receptor targeting have been simultaneously integrated onto recombinant protein nanoparticles, and it demonstrates the potential of using biofabrication strategies to generate functional nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.