Abstract
The blood–brain barrier (BBB) serves as a selective filter that prevents harmful substances from entering the healthy brain. Dysfunction of this barrier is implicated in several neurological diseases. In the context of Alzheimer's disease (AD), BBB breakdown plays a significant role in both the initiation and progression of the disease. This study introduces a three-dimensional (3D) self-assembled in vitro model of the human neurovascular unit to recapitulate some of the complex interactions between the BBB and AD pathologies. It incorporates primary human brain endothelial cells, pericytes and astrocytes, and stem cell-derived neurons and astrocytes harboring Familial AD (FAD) mutations. Over an extended co-culture period, the model demonstrates increased BBB permeability, dysregulation of key endothelial and pericyte markers, and morphological alterations mirroring AD pathologies. The model enables visualization of amyloid-beta (Aβ) accumulation in both neuronal and vascular compartments. This model may serve as a versatile tool for neuroscience research and drug development to provide insights into the dynamic relationship between vascular dysfunction and AD pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.