Abstract
Experimental tests in wind tunnels have been traditionally employed as a fundamental tool to evaluate aerodynamic and aeroelastic effects due to wind action on civil engineering structures, such as bridges and slender buildings. In the last decades, due to the versatility presented by numerical methods to change physical as well as geometrical parameters, numerical simulation has become a very attractive tool. Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD) together with Fluid‐Structure Interaction (FSI) techniques are employed in aerodynamic and aeroelastic analysis in several engineering fields. Aerodynamic and aeroelastic behavior due to wind action on the Guama River Bridge, located at Pará State, Brazil, is first studied, taking into account experimental tests performed in the Wind Tunnel Joaquim Blessman of the Building Aerodynamic Laboratory, UFRGS. Numerical procedures are used to simulate experimental tests in order to determine aerodynamic and aeroelastic characteristics of the bridge, which is idealized by sectional models. Finally, an aeroelastic analysis of a flexible slender building is presented. Good results are obtained using numerical simulation, when compared with experimental tests.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have