Abstract

This paper explores research into hydraulic hybrids that span a wide range of applications from heavy-duty vehicles, such as city buses, to small passenger vehicles. This case study also highlights the importance of having a well-designed energy management strategy if one is to maximize benefit of the hybrid powertrain. There is potential for hydraulic hybrid vehicles to offer a cost-effective solution to the need for increased efficiency in transportation systems. The high-power density of fluid power makes it a natural choice for energy storage in urban driving environments where there are frequent starts/stops and large acceleration/braking power demands. Because the opportunities and challenges of fluid power are different than those of electrical power, unique control strategies are needed and a summary of common energy management strategies (EMS) design methods for hydraulic hybrids has been presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call