Abstract

The Lieb-Mattis theorem about antiferromagnetic ordering of energy levels on bipartite lattices is generalized to finite-size two-leg spin-$1∕2$ ladder model frustrated by diagonal interactions. For reflection-symmetric model with site-dependent interactions, we prove exactly that the lowest energies in sectors with fixed total spin and reflection quantum numbers are monotone increasing functions of total spin. The nondegeneracy of most levels is also proven. We also establish the uniqueness and obtain the spin value of the lowest level multiplet in the whole sector formed by reflection-symmetric (antisymmetric) states. For a wide range of coupling constants, we prove that the ground state is a unique spin singlet. For other values of couplings, it may be also a unique spin triplet or may consist of both multiplets. Similar results have been obtained for the ladder with arbitrary boundary impurity spin. Some partial results have also been obtained in the case of periodical boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.