Abstract

This paper proposes an energy-efficient trajectory planning approach for high speed trains to reduce the traction energy consumption. Firstly, an optimization model is developed by defining the objective function as a weighted sum of the traction energy consumption and passengers’ riding comfort. Besides the constraints in the classic optimal train control problem (such as the trip time, running resistance, speed limit, and the train characteristics), the discrete throttles, split phase zone, and the sectionalized tunnel resistance are introduced in this paper. Then, all the nonlinear constraints are approximated through the piecewise affine function and the energy-efficient trajectory planning problem is turned into an mixed integer linear programming (MILP) problem. The MILP problem can be solved by existing solvers CPLEX and YALMIP. Finally, some cases are conducted to illustrate the effectiveness of the proposed approach. The result shows that the traction energy consumption is increased by 4.5% when the ridding comfort is taken into consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.