Abstract

Wireless Body Area Network (WBAN) has become a promising type of networks to provide applications such as real-time health monitoring and ubiquitous e-Health services. One challenge in the design of WBAN is that energy efficiency needs to be ensured to increase the network lifetime in such a resourceconstrained network. Another critical challenge for WBAN is that quality of service (QoS) requirements, including packet loss rate (PLR), throughput and delay, should be guaranteed even under the highly dynamic environment due to changing of body postures. In this paper, we design a unified framework of energy efficient resource allocation scheme for WBAN, in which both constraints of QoS metrics and the characteristics of dynamic links are considered. A transmission rate allocation policy (TRAP) is proposed to carefully adjust the transmission rate at each sensor such that more strict PLR requirement could be achieved even when the link quality is very poor. A QoS optimization problem is then formulated to optimize the transmission power and allocated time slots for each sensor, which minimizes energy consumption subject to the QoS constraints. Numerical results demonstrate the effectiveness of the proposed transmission rate allocation policy and the resource allocation scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call