Abstract

In the era of pervasive mobile and heterogeneous networks, maintaining seamless connectivity during handover events while minimizing energy consumption is paramount. Traditional handover mechanisms prioritize metrics such as signal strength, user mobility, and network load, often neglecting the critical aspect of energy consumption. This study presents a novel approach to handover decision-making in mobile networks by incorporating energy-related metrics, such as battery level, energy consumption rate, and environmental context, to make informed handover decisions that balance connectivity quality and energy efficiency. Unlike traditional methods that primarily focus on signal strength and network load, our approach addresses the critical need for energy efficiency, particularly in high-mobility scenarios. This innovative framework not only enhances connectivity but also significantly improves power consumption management, offering a more sustainable solution for modern mobile networks. Through extensive simulations, we demonstrate the effectiveness of our proposed solution in reducing energy usage without compromising network performance. The results reveal significant improvements in energy savings for mobile devices, especially under high-mobility scenarios and varying network conditions. By prioritizing energy-efficient handovers, our approach not only extends the battery life of mobile devices but also contributes to the overall sustainability of mobile networks. This paper underscores the importance of incorporating energy metrics into handover decisions and sets the stage for future research in energy-aware network management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.