Abstract
With small cell base stations (SBSs) densely deployed in addition to conventional macro base stations (MBSs), the heterogeneous cellular network (HCN) architecture can effectively boost network capacity. To support the huge power demand of HCNs, renewable energy harvesting technologies can be leveraged. In this paper, we aim to make efficient use of the harvested energy for on-grid power saving while satisfying the quality of service (QoS) requirement. To this end, energy-aware traffic offloading schemes are proposed, whereby user associations, ON-OFF states of SBSs, and power control are jointly optimized according to the statistical information of energy arrival and traffic load. Specifically, for the single SBS case, the power saving gain achieved by activating the SBS is derived in closed form, based on which the SBS activation condition and optimal traffic offloading amount are obtained. Furthermore, a two-stage energy-aware traffic offloading (TEATO) scheme is proposed for the multiple-SBS case, considering various operating characteristics of SBSs with different power sources. Simulation results demonstrate that the proposed scheme can achieve more than 50% power saving gain for typical daily traffic and solar energy profiles, compared with the conventional traffic offloading schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.