Abstract
The Quality of Service (QoS) in Mobile Edge Computing (MEC) systems is significantly dependent on the application offloading and placement decisions. Due to the movement of users in MEC networks, an optimal application placement might turn into the least efficient placement in few minutes. Thus, it is crucial to take the dynamics of the system into account when designing application placement mechanisms. On the other hand, energy consumption of servers is a significant component of the cost of services in MEC systems and must also be considered in the design of the mechanisms. In this article, we model the problem of energy-aware application placement in edge computing systems as a multi-stage stochastic program. The objective is to maximize the QoS of the system while taking into account the limited energy budget of the edge servers. To solve the problem, we design a novel parallel Sample Average Approximation (SAA) algorithm. We conduct an extensive experimental analysis to evaluate the performance of the proposed algorithm using real-world trace data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have